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Abstract 
Sociality is a defining feature of the human experience: we rely on others to ensure survival and 
cooperate in complex social networks to thrive. Are there brain mechanisms that help ensure we 
quickly learn about our social world to optimally navigate it? We tested whether portions of the 
brain’s default network engage “by default” to quickly prioritize social learning during the memory 
consolidation process. To test this possibility, participants underwent functional magnetic 
resonance imaging (fMRI) while viewing scenes from the documentary film, Samsara. This film 
shows footage of real people and places from around the world. We normed the footage to select 
scenes that differed along the dimension of sociality, while matched on valence, arousal, 
interestingness, and familiarity. During fMRI, participants watched the “social” and “non-social” 
scenes, completed a rest scan, and a surprise recognition memory test. Participants showed 
superior social (vs. non-social) memory performance and the social memory advantage was 
associated with neural pattern reinstatement during rest in the dorsomedial prefrontal cortex 
(DMPFC), a key node of the default network. Moreover, it was during early rest that DMPFC social 
pattern reinstatement was greatest and predicted subsequent social memory performance most 
strongly, consistent with the “prioritization” account. Results simultaneously update 1) theories of 
memory consolidation, which have not addressed how social information may be prioritized in the 
learning process and 2) understanding of default network function, which remains to be fully 
characterized. More broadly, the results underscore the inherent human drive to understand our 
vastly social world.  
 
 
 
Significance Statement 
Writer Kurt Vonnegut once said “if you describe a landscape or a seascape, or a cityscape, always 
be sure to include a human figure somewhere in the scene. Why? Because readers are human 
beings, mostly interested in other human beings.” Consistent with Vonnegut’s intuition, we found 
that the human brain prioritizes learning scenes including people, more so than scenes without 
people. Specifically, as soon as participants rested after viewing scenes with and without people, 
the dorsomedial prefrontal cortex of the brain’s default network immediately repeated the scenes 
with people during rest to promote social memory. The results add new insight into the human 
bias to process the social landscape. 
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As we move through everyday life, we come across an abundance of information. Just as an 
example, imagine walking through your favorite city. At once, you are bombarded with signs, 
shops, and people interacting in all kinds of ways. We continuously perceive far more than we 
could possibly remember (1-3), which is why some experiences stick with us and others are 
forgotten (4). Is certain information from our seemingly seamless encoding prioritized in memory, 
and if so, how? 
 
One possibility is that social information—that is, information about people—may be prioritized in 
memory. Given that primates rely on conspecifics to ensure survival (5-8), social information is 
highly valuable (9), which should amplify its memorability (10-12). There is also evidence that 
social content tends to be easily learned and retrieved (13-14). For instance, the same stimuli is 
more memorable if participants attend to its social (vs. non-social) aspects during encoding (13, 
15). Past social stressors (e.g., a romantic break-up) are also more easily re-experienced than 
past non-social stressors (e.g., a physical injury), even when the events are matched on emotional 
intensity at the time of the event (16). Social information can even be used to potentiate 
reinforcement learning as early in development as infancy (14). Collectively, psychological data 
point to the possibility that social information carries a powerful memorial glue. 
 
If social information is privileged in memory, how might the brain prioritize it during the learning 
process? An answer to this question may stem from two observations. First, the brain region most 
reliably associated with social information processing, the dorsomedial prefrontal cortex (DMPFC; 
(17-20)), is also part of the brain’s default network, known to engage quickly by default during rest 
(21-23). Second, rest is a time when new information is committed to memory (i.e., consolidated; 
(24-26)). The tendency for the human brain to “default” back to the DMPFC as soon as our mind 
is free of external demands may therefore bias us towards social learning during rest. 
 
Consistent with this possibility, past work implicates DMPFC in social memory encoding and 
retrieval (15, 17, 27) and DMPFC may play a general role in social learning during rest (28-29). 
For example, DMPFC increases functional connectivity with other portions of the default network 
after encoding new social information, and this increased connectivity predicts social (but not non-
social) subsequent memory performance (28-29). Critically, however, past work examining social 
consolidation at rest fully separates social encoding from non-social encoding to isolate which 
brain regions consolidate the different information at rest. As a result, it is impossible to know if 
social consolidation is “prioritized” at rest by the DMPFC based on prior research; a claim for 
prioritization would require evidence that when presented with social and non-social information 
during the same encoding session, the DMPFC prefers to consolidate the social information 
during subsequent rest, and possibly does so more quickly than brain regions consolidating other 
forms of information. Establishing the prioritization of social consolidation would update existing 
theories of learning and memory, which to date have not considered this possibility. This gap is 
surprising, given that theoretical accounts of memory formation suggest goal-relevant content 
may be prioritized during consolidation (30) and that humans have a strong, endogenous goal to 
feel connected to their social world (31). 
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The hypothesis driving the present study is that social information is prioritized during 
consolidation at rest in the DMPFC. Strong evidence for this possibility requires anticipating and 
thwarting two potential confounds. First, social information is often conflated with a number of 
dimensions known to enhance memory: valence, arousal, interestingness and familiarity (32-34). 
If we found that the DMPFC consolidated social memory early in rest, it would be hard to know if 
it is the “socialness” of the information encoded (i.e., the extent to which it pertained to people) 
that drove prioritization versus the other dimensions with which socialness tends to covary. 
Second, to best approximate real-world social learning, it is important to use encoding stimuli that 
are as naturalistic as possible, yet a great deal of naturalistic social stimuli used in neuroscience 
research takes the form of a narrative story (35). Many naturalistic approaches to investigating 
the role of the default network in social cognition involve television dramas, movies, and podcasts 
(36-40). However, the narrative plot of these stories creates a confound for the present 
hypotheses. If participants encoded a story while undergoing fMRI and it was discovered that they 
had better memory for the social (vs. non-social) information in the story and that the DMPFC 
prioritized social consolidation at rest, it would be difficult to determine whether the social memory 
advantage was due to the prioritization of social learning at rest broadly speaking or whether the 
plot of the story creates a schema for social information (but not non-social information), which 
could incidentally improve and prioritize social memory. 
 
To rule out these confounds, we presented participants with footage from the documentary film, 
Samsara. This documentary was intentionally developed to have no narrative or plot, and instead 
portrays footage of real people, places, and objects from around the world. Scenes from the 
documentary were normed by independent raters on valence, arousal, interestingness, familiarity, 
and socialness (i.e., the extent to which they had to do with people). This allowed us to select a 
subset of video clips that varied on the dimension of sociality, while being matched on the other 
dimensions. With this paradigm in hand, we had a new sample of participants complete functional 
magnetic resonance imaging (fMRI) while they encoded the social and non-social video clips in a 
fully intermixed fashion, completed a resting state scan, and a surprise memory test for the 
footage (Figure 1A). 

 
If the social prioritization account is correct, we would expect to see the following patterns in our 
data. First, participants should show better memory performance for the social vs. non-social 
stimuli. Second, we should see evidence that the DMPFC preferentially consolidates the social 
information encoded (but not non-social information encoded), and this consolidation may occur 
during early stages of rest. This would be consistent with the idea that our tendency to default 
back to DMPFC as soon as we rest biases the brain towards social learning. We used the recently 
developed neural pattern reinstatement approach to test this hypothesis (41-42). This approach 
tests whether reengaging multivariate patterns from encoding during subsequent rest predicts 
memory performance (41). The reinstatement approach is conceptually similar to the idea of 
“replay” during rest from the rodent literature on memory consolidation (43-46). 
 
To complement our hypotheses about the DMPFC in social consolidation, we also investigated 
whether pattern reinstatement in a prefrontal brain region traditionally associated with non-social 
memory—the left ventrolateral prefrontal cortex (lVLPFC; 47) —may show evidence of neural 
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pattern reinstatement during rest for the non-social (but not social) stimuli. Given that lVLPFC is 
not a region that shows quick activity by default during rest, we predicted lVLPFC would show 
non-social reinstatement across the rest period generally, as opposed to prioritization during early 
rest in particular. Finally, given that the hippocampus is thought to play a general role in memory 
consolidation (24, 48), we also examined whether this brain region shows evidence of both social 
and non-social memory consolidation during rest. 
 
RESULTS 
 
Better Memory Performance for Social (vs. Non-Social) Videos 
Our first prediction is that participants will show better memory performance on the surprise 
memory test for the social (vs. non-social) video clips from Samsara. The surprise memory test 
was structured such that participants were shown images from the 60 encoded (30 social; 30 non-
social) and 60 lure video clips (30 social; 30 non-social) in a fully randomized order. The lure video 
clips were normed on valence, arousal, interestingness, and familiarity in the same fashion as the 
encoded stimuli (see Methods). Consistent with our first prediction, participants showed superior 
social (vs. non-social) memory performance (paired sample t(24)=5.055, p=3.612e-05; Figure 
1b). We defined memory performance here as the d’ memory score (by subtracting standardized 
false alarms from standardized hits with z-scores derived via the inverse cumulative density 
function) divided by the correct reaction time (RT) so that our memory performance score 
considers both accuracy and speed. It is noteworthy that social memory performance remains 
significantly better than non-social memory performance even if we only consider d’ as our 
measure of accuracy (paired sample t(24)=5.090, p=3.735e-05) or just correct RT as our measure 
of accuracy (paired sample t(24)=-2.873, p=8.595e-03). Thus, the behavioral results robustly 
suggest social information is better recalled than non-social information, even when constructs 
often conflated with sociality (i.e., valence, arousal, interestingness, and familiarity) are held 
constant. 
 

Figure 1. A) Experimental Paradigm. Participants encode social and non-social video clips from 
Samsara in a randomized order and a subsequent rest scan. Next, participants complete a 
surprise recognition memory test that includes all of the 60 videos encoded, as well as 60 lure 
videos that were not previously encoded. Social and non-social videos are matched on valence, 
arousal, interestingness, and familiarity and differ on the dimension of sociality: the extent to which 



RUNNING HEAD: SOCIAL COGNITION, MEMORY, DEFAULT NETWORK 

5 

they have to do with people. B) Memory Performance. Participants demonstrated better social 
versus non-social memory performance. 
 
Double-Dissociation for Social (DMPFC) and Non-Social (lVLPFC) Consolidation 
Mechanisms during Rest 
We created regions-of-interest (ROIs) of the DMPFC cluster observed in the contrast of social 
(vs. non-social) encoding and the lVLPFC cluster observed in the contrast of non-social (vs. 
social) encoding (Figure 2A; see Methods for information on ROIs). Each subject’s multivariate 
pattern in the ROIs during social video encoding, and separately, non-social video encoding were 
extracted. Next, we performed the reinstatement analysis developed by Schapiro & Norman (41; 
Figure 2B). The approach, conceptually, is template matching: identifying instances during rest in 
which the multivariate DMPFC pattern is meaningfully similar to the pattern observed during 
encoding and linking the number of reinstatements to subsequent memory performance (see 
Methods for more details). The observed reinstatement events showed high correlations with 
encoding patterns (Means > 0.585; SDs < 0.0644), which further supports and justifies counting 
these instances as reinstatement. 
 

 
Figure 2. A) Regions-of-interest (ROIs) predicted to show reinstatement and subsequent memory 
effects. DMPFC refers to the dorsomedial prefrontal cortex, which was predicted to show social 
reinstatement and subsequent social memory effects. lVLPFC refers to the left ventrolateral 
prefrontal cortex and was predicted to show non-social reinstatement and subsequent non-social 



RUNNING HEAD: SOCIAL COGNITION, MEMORY, DEFAULT NETWORK 

6 

memory effects. The hippocampus, given its broad role in memory, was predicted to show 
reinstatement and subsequent memory effects collapsed across social and non-social content. 
B) Visual depiction of the reinstatement approach in which the multivariate patterns in a ROI 
during encoding are applied to each TR of the subsequent rest scan. In line with prior work (41), 
correlations between the encoding pattern and TR rest pattern that are 1.5 standard deviations 
above the mean for a given subject are considered instances of reinstatement. 
 
Consistent with the prediction that DMPFC preferentially consolidates social information, the 
number of DMPFC social pattern reinstatements across the rest period correlated with social 
memory performance (r=0.43, p=0.042; Figure 3A) whereas the number of non-social pattern 
reinstatements in DMPFC across the rest period was unrelated to non-social memory 
performance (r=-.14, p=0.505, Figure 3A). The lVLPFC showed the opposite pattern of results. 
The number of lVLPFC non-social pattern reinstatements significantly correlated with better non-
social memory performance (r=0.44; p=0.029; Figure 3B) whereas the number of lVLPFC social 
pattern reinstatements was unrelated to social memory performance (r=-0.05; p=0.824; Figure 
3B). It is noteworthy that, overall, there was a greater number of non-social (vs. social) DMPFC 
pattern reinstatements (paired samples t(23)=-2.450, p=0.023; mean social DMPFC=29.00 
SD=10.85; mean non-social DMPFC=39.96 SD=12.01), although as noted above and shown in 
Figure 3A, the number of non-social DMPFC pattern reinstatements do not significantly relate to 
non-social memory performance (whereas the number of DMPFC social pattern reinstatements 
do significantly relate to social memory performance). 
 
Although our hypotheses were specific to the DMPFC and VLPFC, to ensure we did not miss any 
meaningful patterns in other brain regions, we ran two follow-up analyses. First, we assessed 
whether the relationship between the number of neural pattern reinstatements during rest and 
subsequent memory was significant in the other ROIs observed during encoding (social vs. non-
social encoding: VMPFC; precuneus, left amygdala and fusiform gyrus; non-social vs social 
encoding: bilateral parahippocampal place area). None of these follow-up analyses were 
significant (r’s < 0.208, p’s > 0.318), except for the lPPA showing a significant (and negative) non-
social reinstatement-to-subsequent non-social memory relationship (r=-.539, p=0.007). Second, 
given that it is possible regions outside of those observed during encoding could show evidence 
of reinstatement-to-subsequent memory effects, we next repeated our reinstatement analyses 
with a k=50 whole-brain parcellation (49). No additional brain regions showed support for this 
possibility. Collectively, these results suggest that the link between greater neural pattern 
reinstatement during rest and superior subsequent memory is supported by different prefrontal 
regions for social (DMPFC) and non-social (lVLPFC) memory. 
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Figure 3. Double-dissociation for social and non-social memory consolidation. Panel A) shows 
that DMPFC social pattern reinstatement significantly predicts social, but not non-social, memory 
performance. Panel B) shows that lVLPFC non-social pattern reinstatement significantly predicts 
non-social, but not social, memory performance. 
 
The DMPFC Shows Evidence of Social Consolidation during Early Stages of Rest 
Given that we established a double dissociation such that DMPFC social pattern reinstatements 
relate to social (but not non-social) memory performance, while lVLPFC non-social pattern 
reinstatements relate to non-social (but not social) memory performance, we next sought to dig 
deeper into how DMPFC may prioritize social learning during rest. The definition of “prioritize” is 
to treat something as more important than other things. Our next question was whether the brain 
prioritizes DMPFC social pattern reinstatement by doing it early in the consolidation process. That 
is, does social consolidation happen quickly in the DMPFC? To examine this possibility, we simply 
divided our resting state scan into early (0-168 seconds), middle (168-336 secs), and late (336-
504 secs) time periods and summed the number of DMPFC social pattern reinstatements in each 
time period. We then used a linear mixed effects model to test the within-subjects contrast that 
the number of reinstatements during the early portion of rest is significantly greater than the middle 
and late rest periods (i.e., 2/3early -1/3middle -1/3late), which was significant (t(44)=3.043, p=0.004; 
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Figure 4). Moreover, the relationship between the number of DMPFC social pattern 
reinstatements and social memory performance is driven by early rest: when DMPFC social 
pattern reinstatement for early, middle, and late rest were entered as separate regressors in a 
model predicting social memory performance, only early rest significantly predicted social memory 
performance (F(2,44)=9.771, p=0.006). Follow-up correlation analyses further confirmed this 
effect, showing the correlation is significant during the early rest period (r=0.580, p=0.004) but not 
the middle (condition-level r=0.115, p=0.600) or late rest periods (r=0.188, p=0.391, Figure 5). 

 
Figure 4. DMPFC shows a greater number of social pattern reinstatements during early (vs. 
middle and late) portions of the rest scan. 
 
The same analysis with the non-social DMPFC encoding template produced null results: the 
number of non-social pattern reinstatements in DMPFC was not greater during early vs. middle 
and late periods of rest (t(44)=1.459, p=0.152). Additionally, the number of non-social pattern 
reinstatements in DMPFC was unrelated to non-social memory performance during early, middle, 
and late rest periods (r’s<0.259, p’s>0.211). Overall, the temporal analyses add further support 
for the prioritization hypothesis: it is earlier moments of rest in which social information is 
preferentially consolidated by the DMPFC at rest. 
 
In contrast to the DMPFC, the lVLPFC did not show evidence of temporal prioritization for non-
social consolidation. There was not a greater number of non-social lVLPFC pattern 
reinstatements during early (vs middle and late) rest periods (t(46)=0.895, p=0.376). Moreover, 
the correlation between lVLPFC non-social pattern reinstatement and non-social memory 
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performance was marginal during all time-periods (early r=0.300, p=0.145; middle r=0.375, 
p=.065; late r=0.312, p=0.130), indicating the non-social consolidation relationship was not unique 
to early rest. In other words, while lVLPFC non-social pattern reinstatement does preferentially 
relate to non-social memory consolidation, it does not show evidence of early prioritization. 
 

 
Figure 5. The relationship between DMPFC social pattern reinstatement and subsequent social 
memory is driven by the early rest period. 
 
The Hippocampus Plays a General Role in Memory Consolidation at Rest 
Given its broad role in memory consolidation (50), we next examined the hippocampus. Regions-
of-interest were created from a correct vs. incorrect contrast at encoding where clusters emerged 
in both the left and right hippocampus. A multivariate pattern template for correctly remembered 
stimuli was extracted from encoding data within each ROI and used for pattern reinstatement 
analysis. Consistent with previous literature (41), we found a marginal effect indicating that the 
amount of correct pattern reinstatement in the right hippocampus at rest was negatively correlated 
with overall memory performance (r=-0.396, p=0.061). Looking at each type of memory 
separately, we found a non-significant relationship between social correct pattern reinstatement 
and social memory performance (r=0.228, p=0.295), as well as non-social correct pattern 
reinstatement and non-social memory performance (r=-0.365, p=0.087) in the right hippocampus. 
Additionally, the amount of correct pattern reinstatement was not greater in earlier (vs middle and 
late) rest periods (t(46)=0.553, p=0.582). 
 
Mean Encoding Results 
Past work has demonstrated “encoding and subsequent memory” effects such that greater 
activation during encoding often predicts superior subsequent memory (51-53). It is therefore 
possible that our reinstatement results are epiphenomenal, reflecting residual effects driven by 
encoding. Given this possibility, we sought to explore if mean activation at encoding of social and 
non-social stimuli meaningfully predict participants’ memory scores and, if yes, to delineate the 
ways in which brain activity at encoding and brain activity during post-encoding rest uniquely 
contribute to participants’ memory performance. We found, however, that neither mean activation 
in the DMPFC in response to social stimuli (r=0.113, p=0.607) nor in the lVLPFC in response to 
non-social stimuli (r=-0.321, p=0.109) significantly related to participants’ subsequent memory 
performance. We hypothesize that this difference between our results and prior work could be 
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driven by the greater complexity in the stimulus set than in previously used paradigms, and the 
lack of a narrative structure in the stimulus set in comparison to other naturalistic stimuli designs. 
Overall, these follow-up analyses further point to the important role of post-encoding rest in 
memory consolidation, with the temporal prioritization of social memory consolidation by the 
DMPFC. 
 
DISCUSSION 
 
Humans are a highly social species and must learn from their social environment to succeed in 
everyday life (43). Yet, whether and how the brain may be tuned towards social learning remains 
unclear. We provide the first evidence that the DMPFC prioritizes social learning via quick-acting 
consolidation processes during rest. In contrast, the lVLPFC, a region previously implicated in 
encoding and subsequent memory effects (47, 55-56), promotes non-social learning via 
consolidation mechanisms at rest in a non-prioritized fashion. Collectively, the findings suggest 
that social information may be preferentially prioritized during learning and update existing models 
of memory consolidation, which to date have not documented this possibility. 
 
The findings provide key support for the suggestion that the human brain may be “social by 
default” (57-58). This perspective argues that, given that the same brain regions associated with 
social inference comprise a great deal of the default network, a brain system characterized by 
activating “by default” during rest, important social cognitive processes may occur by default 
during rest in humans to facilitate navigating social life (57-58). In particular, our results support 
this hypothesis by showing that the DMPFC, a key default network region, commits social memory 
traces immediately during rest. Thus, the tendency to engage DMPFC “by default” during rest 
may keep the brain in a prepared state to facilitate social learning. 
 
Whether such default social tuning mechanisms help ensure we are socially savvy versus the 
possibility that social brain mechanisms engage by default as a consequence of people tending 
to be very social remains to be determined. On the one hand, default network engagement at rest 
has been observed early in infant development (59), suggesting humans may come into the world 
with default network mechanisms in place to help ensure sociality. On the other hand, transitioning 
into contexts that amplify the need for social bonding and new social roles, such as the transition 
into adolescence as well as the transition to motherhood, correspond with systematic changes in 
default network function, including resting state patterns (60-62). Whether such changes reflect 
purely environmental versus biological mechanisms remains to be fully determined. At the very 
least, future work could examine how manipulating social contact impacts default social learning 
patterns. 
 
The DMPFC social consolidation results are consistent with recent arguments of adaptive 
memory consolidation (30), which suggest that post-encoding consolidation processes may 
prioritize goal-relevant information. This account has proposed multiple dimensions that may be 
prioritized during consolidation, such as valence and arousal (30). Note that our social and non-
social stimuli were matched on valence and arousal, as well as other dimensions often conflated 
with sociality: interestingness and familiarity. Thus, sociality may be one dimension of many that 
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the brain ‘tags’ for adaptive memory processes. Relatedly, the default network includes multiple 
brain regions in addition to the DMPFC, including the VMPFC, precuneus, tempoparietal junction, 
and superior temporal sulcus extending into temporal poles. It is thus possible that while the 
DMPFC prioritizes social learning during rest, other default network regions may prioritize 
consolidating the types of content they respond to. Moreover, even within the DMPFC, some 
social dimensions may be more prioritized than others (e.g., cues of social connectedness versus 
cues of status). Future research can investigate the unique contributions of competing 
organizational dimensions for adaptive memory consolidation and how variability in social content 
may alter memory consolidation processes within the DMPFC. 
 
Considerable work implicates the default network and, particularly, portions of the medial 
prefrontal cortex (MPFC) in schema instantiation (36, 63). Many of these findings have been 
observed while participants passively view audio or visual naturalistic narratives during encoding 
or reinstate similar neural patterns at recall. Relatedly, the DMPFC portion of MPFC preferentially 
responds to naturalistic narratives involving people (20) and participants with pre-existing, 
polarized social schemas show similar neural responding in DMPFC while viewing naturalistic, 
schema-relevant stimuli (38, 64). Our results suggest neural patterns for schema-specific events 
may be reinstated during consolidation in post-encoding rest to facilitate subsequent memory 
performance. Indeed, recent findings suggest that fictional narratives “linger” in mind post-
encoding (65), further pointing to the possibility that stories about people may stick with us, in 
part, via post-encoding consolidation mechanisms. 
 
Additionally, prior memory research suggests that default network activity during encoding relates 
to higher-order, more abstract schema representations that occur on the timescale of minutes 
(66). In the current study, we demonstrate that DMPFC activity during consolidation benefits 
subsequent memory performance within an experimental stimulus design that lacks any coherent 
narrative structure across time. It is possible, however, that participants in our study activated 
relevant schemas during encoding on a much shorter time scale (on the order of seconds) to 
situate the video clips in a larger, perhaps self-relevant, context. If so, past suggestions that the 
default network, or at least DMPFC, supports longer-time scale processing may need to be 
revised, as it is possible that the cognitive processing needed in prior work (e.g., relating social 
inferences to existing schemas) co-occurs with longer-time scales intrinsic to narratives. In other 
words, when the narrative structure of social stimuli is removed, the DMPFC still preferentially 
responds to and consolidates social information and it does so quickly. To further probe this 
possibility, future work can systematically investigate more complex social narratives that require 
schema activation on shorter timescales. Our social worlds are complex and nuanced; they can 
require the integration of multiple, independent, co-occurring narratives during a large dinner party 
or professional networking event. Future work may aim to reveal if regions of the MPFC encode 
and juggle multiple schematic representations on shorter timescales within contexts of greater 
social complexity to benefit memory. 
 
Findings from the current study contribute to a greater understanding of default network function. 
One current account of default network function proposes that the default network may process 
higher-order, internally constructed representations (67-68). Alternatively, to integrate findings 
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that implicate the default network in social cognition, others have more recently proposed the 
default network may integrate extrinsic social information and intrinsic idiosyncratic information to 
facilitate a shared neural code across individuals (69). Results from our study propose one 
possible mechanism by which the default network may integrate extrinsic social information and 
intrinsic idiosyncratic information: via social cognitive consolidation functions at rest. Future work 
may seek to explore social and non-social higher-order reasoning tasks in order to parse 
competing accounts of default network function, as well as better elucidate mechanisms of social 
consolidation functions within the default network during rest. 
 
We also observed pattern reinstatement in the hippocampus negatively correlated with overall 
memory performance (collapsing across social and non-social stimuli) in a non-prioritized fashion. 
This finding nicely dovetails the prior work our reinstatement approach was based on, which also 
found that hippocampal pattern reinstatement helps commit weakly learned information to 
memory (41). Specifically, Schapiro et al. (2018) required participants to learn three sets of novel 
shapes and found greater hippocampal reinstatement predicted better memory for the weakly 
learned shapes (i.e., a negative correlation between reinstatement and memory performance). 
Similarly, research in rodents examining hippocampal replay finds that the relationship between 
encoding and replay is not always positively correlated and that hippocampal replay may serve 
to build representations of the entire environment, rather than just the well-learned aspects (70). 
 
 

Conclusion 
In summary, we found that when left with the choice to consolidate social or non-social 
information, the human brain prioritizes consolidating the social information during rest. This 
process happens through the DMPFC, a key node of the brain’s default network–which gets its 
name from the observation that it activates “by default” whenever our mind is free from external 
demands. Our results therefore suggest that the tendency to “default” to DMPFC may help ensure 
we learn new social information as soon as we can. 
 
METHODS 
 
Participants 
Twenty-six individuals (17 females; mean age = 22.77, SD = 4.8) were recruited for participation 
in the study. All participants provided informed consent in accordance with the Dartmouth College 
Institutional Review Board. Participants were awarded course credit or paid $20 per hour for study 
completion. 
 
Stimuli 
Stimuli presented at encoding consisted of 5-10 second video clip excerpts from the non-
narrative, documentary film, Samsara. A total of 60 video clips were presented at encoding, 30 of 
which were social stimuli (e.g., showed footage of humans) and 30 of which were non-social 
stimuli (e.g., showed footage of locations and industrial objects). 
 
A total of 120 stimuli were selected based on ratings from mTurk participants (n=372) who 
previewed 389 video clips from Samsara. Participants were presented with 65 video clips and 
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rated each clip they saw on dimensions of familiarity, valence, pleasantness, excitement, and 
sociality. Ratings were made on a scale from 1-100 (where 1=low familiarity, low pleasantness, 
low excitement, or negative valence and 100=high familiarity, high pleasantness, high excitement, 
or positive valence). Mean ratings of familiarity, valence, pleasantness, and excitement were not 
statistically significantly different across social and non-social video clips (t’s<0.59, p’s>0.53), but 
mean ratings of sociality did significantly differ (Mean social videos = 71.60, SD = 9.43; Mean 
non-social videos = 34.63; SD = 6.58; t=-28.97; p=1.40e-36). 
 
Procedures 
Participants completed an fMRI scanning session consisting of a structural anatomical scan, two 
encoding scans, a post-encoding rest scan, and subsequently, a surprise memory test. 
 
Encoding 
To mimic the way we simultaneously encounter social and non-social information in everyday life, 
at encoding, social and non-social video clips were randomly presented, as opposed to being 
blocked. Jittered fixation occurred after each video clip (mean interstimulus interval (ISI) = 3.00 
secs; SD = 0.825 secs). Each participant completed two (2) encoding functional runs lasting 11 
minutes. 
 
Resting State 
Next, participants completed a resting state scan. At rest, participants were instructed to think 
about what they wanted and stay awake. Based on prior research examining consolidation during 
rest, each rest scan lasted 8.4 minutes (29, 71). 
 
Memory Test 
After the post-encoding resting state scan, participants completed a surprise memory test where 
they indicated if the image on the screen was shown to them at encoding by selecting ‘Yes’, ‘No’, 
or ‘I don’t know’. Participants had up to 6 seconds to respond, and were presented with 120 
images of 60 social and 60 non-social stimuli. The test was made up of 60 true images shown at 
encoding, and 60 lure images taken from video clips of documentary film, Samsara, but not shown 
during the encoding phase. Stimulus images were randomly presented across participants. Our 
memory performance variable takes into account both accuracy and speed. Specifically, we 
calculated the d’ memory score by subtracting standardized false alarms from standardized hits 
with z-scores derived via the inverse cumulative density function. This value was then divided by 
the speed (i.e., reaction time (RT)) with which it took participants to answer accurately (i.e., 
d’/correct RT).  
 
fMRI Data Acquisition 
Brain imaging was conducted at the Dartmouth Brain Imaging Center in Hanover, NH on a 
Siemens Prisma 3T scanner using a 32-channel head coil. Functional images were acquired with 
a T2*-weighted echo-planar imaging sequence set to the following parameters: voxel size = 2.5 
x 2.5 x 2.5 mm, repetition time (TR) = 1000 ms, echo time (TE) = 30 ms, field of view (FoV) = 24 
cm, slice thickness = 2.5-mm, matrix=96 x 96, flip angle=59°, multiband acceleration factor = 4. 
Each participant also underwent a T1-weighted structural image (voxel size=0.9-mm, TR = 2300 
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ms, TE = 2.32 ms, FoV = 24 cm, slice thickness=0.9-mm, matrix=256 x 256, and flip angle=8°). 
The study design consisted of an event-related randomized design determined by easy-optimize-
x (72) to maximize detection of meaningful neural clusters from the linear contrasts of interest 
from encoding (i.e. social vs. non-social encoding), which later serve as regions-of-interest (ROIs) 
for reinstatement analyses.  
 
fMRI Data Preprocessing 
Results included in this manuscript come from preprocessing performed using fMRIPrep 20.2.2 
(73-74; RRID:SCR_016216), which is based on Nipype 1.6.1 (75-76; RRID:SCR_002502). As 
recommended by the creators of fMRIprep, the preprocessing steps are reported below verbatim 
from the software output. 
 
Anatomical Data Preprocessing 
A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset. The T1-weighted 
(T1w) image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (77), 
distributed with ANTs 2.3.3 (78, RRID:SCR_004757), and used as T1w-reference throughout the 
workflow. The T1w-reference was then skull-stripped with a Nipype implementation of the 
antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain 
tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was 
performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, 79). Volume-
based spatial normalization to one standard space (MNI152NLin2009cAsym) was performed 
through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions 
of both T1w reference and the T1w template. The following template was selected for spatial 
normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c [80, 
RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], 
 
Functional Data Preprocessing 
For each of the BOLD runs found per subject (across all tasks and sessions), the following 
preprocessing was performed. First, a reference volume and its skull-stripped version were 
generated using a custom methodology of fMRIPrep. Head-motion parameters with respect to the 
BOLD reference (transformation matrices, and six corresponding rotation and translation 
parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, 81). 
Susceptibility distortion correction (SDC) was omitted. The BOLD time-series (including slice-
timing correction when applied) were resampled onto their original, native space by applying the 
transforms to correct for head-motion. These resampled BOLD time-series will be referred to as 
preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD reference was then 
co-registered to the T1w reference using flirt (FSL 5.0.9, 82) with the boundary-based registration 
(83) cost-function. Co-registration was configured with nine degrees of freedom to account for 
distortions remaining in the BOLD reference. Several confounding time-series were calculated 
based on the preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise 
global signals. FD was computed using two formulations following Power (absolute sum of relative 
motions, 84) and Jenkinson (relative root mean square displacement between affines, 81). FD 
and DVARS are calculated for each functional run, both using their implementations in Nipype 
(following the definitions by 84). The three global signals are extracted within the CSF, the WM, 
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and the whole-brain masks. Additionally, a set of physiological regressors were extracted to allow 
for component-based noise correction (CompCor, 85). Principal components are estimated after 
high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s 
cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 
tCompCor components are then calculated from the top 2% variable voxels within the brain mask. 
For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in 
anatomical space. The implementation differs from that of Behzadi et al. in that instead of eroding 
the masks by 2 pixels on BOLD space, the aCompCor masks are subtracted a mask of pixels that 
likely contain a volume fraction of GM. This mask is obtained by thresholding the corresponding 
partial volume map at 0.05, and it ensures components are not extracted from voxels containing 
a minimal fraction of GM. Finally, these masks are resampled into BOLD space and binarized by 
thresholding at 0.99 (as in the original implementation). Components are also calculated 
separately within the WM and CSF masks. For each CompCor decomposition, the k components 
with the largest singular values are retained, such that the retained components’ time series are 
sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or 
temporal). The remaining components are dropped from consideration. The head-motion 
estimates calculated in the correction step were also placed within the corresponding confounds 
file. The confound time series derived from head motion estimates and global signals were 
expanded with the inclusion of temporal derivatives and quadratic terms for each (86). Frames 
that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion 
outliers. The BOLD time-series were resampled into standard space, generating a preprocessed 
BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped 
version were generated using a custom methodology of fMRIPrep. All resamplings can be 
performed with a single interpolation step by composing all the pertinent transformations (i.e. 
head-motion transform matrices, susceptibility distortion correction when available, and co-
registrations to anatomical and output spaces). Gridded (volumetric) resamplings were performed 
using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the 
smoothing effects of other kernels (87). Non-gridded (surface) resamplings were performed using 
mri_vol2surf (FreeSurfer). 
 
General Linear Model 
Neuroimaging data were analyzed using NLTools (88). The data were spatially smoothed using 
a 6mm full width half maximum 3D gaussian kernel. Nuisance variables included in the model 
consisted of 6 head motion parameters (x, y, and x directions of roll, pitch, and yaw rotations), a 
high-pass filter (duration 128 seconds), linear and quadratic filters, and run regressors. TRs in 
nonsteady-state and TRs with spikes in global signal and average frame difference greater than 
3 SDs were included as individual regressors. 
 
For functional data obtained during encoding scans, a general linear model was created for each 
participant to estimate task-induced activation during social and non-social stimulus presentation. 
Stimulus presentation regressors were convolved with a Glover hemodynamic response function. 
For functional data obtained during resting state scans, an additional intercept regressor was 
included to remove global signal (84). All resting state analyses were performed on the remaining 
residual time series. 
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First-level contrasts comparing social and non-social stimuli at encoding were generated for each 
subject from the model-estimated data. Second-level analyses were subsequently performed to 
derive regions-of-interest (ROIs). These group contrasts were statistically thresholded at p < .001 
with a cluster extent of 200 voxels. The social versus non-social contrast revealed significant 
clusters of activity in the DMPFC (x=12 y=52 z=40, k=501), VMPFC (x=4 y=52 z=-18, k=517), 
precuneus (x=6 y=-60 z=34, k=313), left amygdala (x=-20 y=-8 z=-14, k=16433), and left fusiform 
gyrus (x=-44 y=-50 z=-20, k=4572). The non-social versus social contrast revealed significant 
clusters of activity in bilateral parahippocampal place area (x=-34 y=-48 z=-2, k=1243; x=32 y =-
40 z=-4, k=1149) and left VLPFC (x=-34 y=48 z=26, k=262). 
 
An additional first-level contrast comparing activity during encoding of trials that were later 
correctly versus incorrectly remembered was generated for each subject. Second-level analyses 
were statistically thresholded at p < .001 with a cluster extent of 30 voxels, given the relatively 
small anatomical size of the hippocampus and to help ensure we had a hippocampal cluster to 
investigate. The correct versus incorrect contrast revealed significant clusters of activity in 
bilateral hippocampus (x=-20 y=-8 z =-16, k=36; x=20 y=-6 z=-18, k=38), and right 
parahippocampal Gyrus (x=32 y=-76 z=-22, k= 1504). 
 
Follow-up whole brain analyses were performed using the k=50 whole brain parcellation that used 
k-means clustering to isolate meta-analytic coactivations from Neurosynth (89). This parcellation 
was chosen to help ensure that the regions selected are functionally relevant to psychological 
constructs. Whole brain reinstatement analyses were multiple comparisons corrected using a 
bonferroni-corrected p-value of 0.001. 
 
Pattern Reinstatement 
Multivariate template patterns were created using beta values extracted from functional ROIs 
identified in first-level contrasts at encoding. The multivariate template patterns from encoding 
were correlated with the multivariate template pattern within the same functional ROI for each TR 
during post-encoding rest (TRs=504), generating a matrix of correlation values for each template 
pattern across the duration of rest. Consistent with the research our approach is based on 
Schapiro et al. (41), a potential reinstatement was defined as a correlation greater than 1.5 SD 
above the mean of all correlations for a given subject. The amount of correlation values that 
exceeded this threshold were summed across post-encoding rest to generate a count metric used 
in subsequent analyses. Memory performance scores and reinstatement values from the full rest 
periods were excluded if greater than 2 SDs away from the group mean. Brain-behavior 
correlations reflect two-tailed p-values. 
 
Data availability: Anonymized behavioral and ROI data have been deposited in Open Science 
Framework: https://osf.io/dmf7k/. 
 
Acknowledgements: This research was supported by an R01 awarded to Dr. Meghan L. Meyer. 
 
  



RUNNING HEAD: SOCIAL COGNITION, MEMORY, DEFAULT NETWORK 

17 

References 

1. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both 
by visual information load and by number of objects. Psychological Science, 15(2), 106–
111. 

2. Cohen, M. A., Botch, T. L., & Robertson, C. E. (2020). The limits of color awareness during 
active, real-world vision. Proceedings of the National Academy of Sciences, 117(24), 
13821–13827. 

3. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and 
conjunctions. Nature, 390(6657), 279–281. 

4. Schacter, D. A. (1999). The Seven Sins of Memory. 

5. Bowlby, J. (1988). A Secure Base: Parent-Child Attachment and Healthy Human 
Development. 

6. Harlow, H. F. (1958). The nature of love. The American Psychologist, 13(12), 673–685. 

7. Repetti, R. L., Taylor, S. E., & Seeman, T. E. (2002). Risky families: family social 
environments and the mental and physical health of offspring. Psychological Bulletin, 
128(2), 330–366. 

8. Silk, J. B., Alberts, S. C., & Altmann, J. (2003). Social bonds of female baboons enhance 
infant survival. Science, 302(5648), 1231–1234. 

9. Deaner, R. O., Khera, A. V., & Platt, M. L. (2005). Monkeys pay per view: adaptive valuation 
of social images by rhesus macaques. Current Biology: CB, 15(6), 543–548. 

10. Miendlarzewska, E. A., Bavelier, D., & Schwartz, S. (2016). Influence of reward motivation 
on human declarative memory. Neuroscience and Biobehavioral Reviews, 61, 156–176. 

11. Murty, V. P., & Alison Adcock, R. (2017). Distinct Medial Temporal Lobe Network States as 
Neural Contexts for Motivated Memory Formation. https://doi.org/10.1007/978-3-319-
50406-3 

12. Nairne, J. S., Thompson, S. R., & Pandeirada, J. N. S. (2007). Adaptive memory: Survival 
processing enhances retention. Journal of Experimental Psychology. Learning, Memory, 
and Cognition, 33(2), 263–273. 

13. Hamilton, D. L., Katz, L. B., & Leirer, V. O. (1980). Cognitive representation of personality 
impressions: Organizational processes in first impression formation. Journal of Personality 
and Social Psychology, 39(6), 1050–1063. 

14. Werchan, D. M., & Amso, D. (2021). All contexts are not created equal: Social stimuli win 
the competition for organizing reinforcement learning in 9-month-old infants. 
Developmental Science, 24(5), e13088. 

15. Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2004). Encoding-specific effects of social 
cognition on the neural correlates of subsequent memory. The Journal of Neuroscience: 



RUNNING HEAD: SOCIAL COGNITION, MEMORY, DEFAULT NETWORK 

18 

The Official Journal of the Society for Neuroscience, 24(21), 4912–4917. 

16. Chen, Z., Williams, K. D., Fitness, J., & Newton, N. C. (2008). When hurt will not heal: 
exploring the capacity to relive social and physical pain. Psychological Science, 19(8), 
789–795. 

17. Báez-Mendoza, R., Mastrobattista, E. P., Wang, A. J., & Williams, Z. M. (2021). Social agent 
identity cells in the prefrontal cortex of interacting groups of primates. Science, 374(6566), 
eabb4149. 

18. Lieberman, M. D., Straccia, M. A., Meyer, M. L., Du, M., & Tan, K. M. (2019). Social, self, 
(situational), and affective processes in medial prefrontal cortex (MPFC): Causal, 
multivariate, and reverse inference evidence. Neuroscience and Biobehavioral Reviews, 
99(July 2018), 311–328. 

19. Martin, A. K., Dzafic, I., Ramdave, S., & Meinzer, M. (2017). Causal evidence for task-
specific involvement of the dorsomedial prefrontal cortex in human social cognition. Social 
Cognitive and Affective Neuroscience, 12(8), 1209–1218. 

20. Wagner, D. D., Kelley, W. M., Haxby, J. V., & Heatherton, T. F. (2016). The Dorsal Medial 
Prefrontal Cortex Responds Preferentially to Social Interactions during Natural Viewing. 
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(26), 
6917–6925. 

21. Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 
38(1), 433–447. 

22. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, 
G. L. (2001). A default mode of brain function. Proceedings of the National Academy of 
Sciences of the United States of America, 98(2), 676–682. 

23. Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & 
Petersen, S. E. (1997). Common Blood Flow Changes across Visual Tasks: II. Decreases 
in Cerebral Cortex. Journal of Cognitive Neuroscience, 9(5), 648–663. 

24. Carr, M. F., Jadhav, S. P., & Frank, L. M. (2011). Hippocampal replay in the awake state: a 
potential substrate for memory consolidation and retrieval. Nature Neuroscience, 14(2), 
147–153. 

25. Karlsson, M. P., & Frank, L. M. (2009). Awake replay of remote experiences in the 
hippocampus. Nature Neuroscience, 12(7), 913–918. 

26. Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations during rest are 
related to memory for recent experiences. Neuron, 65(2), 280–290. 

27. Satpute, A. B., Badre, D., & Ochsner, K. N. (2014). Distinct regions of prefrontal cortex are 
associated with the controlled retrieval and selection of social information. Cerebral Cortex, 
24(5), 1269–1277. 

28. Collier, E., & Meyer, M. L. (2020). Memory of Others’ Disclosures Is Consolidated during 
Rest and Associated with Providing Support: Neural and Linguistic Evidence. Journal of 



RUNNING HEAD: SOCIAL COGNITION, MEMORY, DEFAULT NETWORK 

19 

Cognitive Neuroscience, 32(9), 1672–1687. 

29. Meyer, M. L., Davachi, L., Ochsner, K. N., & Lieberman, M. D. (2019). Evidence That 
Default Network Connectivity During Rest Consolidates Social Information. Cerebral Cortex 
, 29(5), 1910–1920. 

30. Cowan, E. T., Schapiro, A. C., Dunsmoor, J. E., & Murty, V. P. (2021). Memory 
consolidation as an adaptive process. Psychonomic Bulletin & Review, 28(6), 1796–1810. 

31. Baumeister, R. F., & Leary, M. R. (1995). The need to belong: desire for interpersonal 
attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497–529. 

32. Kensinger, E. A., & Corkin, S. (2003). Memory enhancement for emotional words: are 
emotional words more vividly remembered than neutral words? Memory & Cognition, 31(8), 
1169–1180. 

33. McGillivray, S., Murayama, K., & Castel, A. D. (2015). Thirst for knowledge: The effects of 
curiosity and interest on memory in younger and older adults. Psychology and Aging, 
30(4), 835–841. 

34. Yonelinas, A. P. (2002). The Nature of Recollection and Familiarity: A Review of 30 Years of 
Research. Journal of Memory and Language, 46(3), 441–517. 

35. Nastase, S. A., Liu, Y.-F., Hillman, H., Zadbood, A., Hasenfratz, L., Keshavarzian, N., Chen, 
J., Honey, C. J., Yeshurun, Y., Regev, M., Nguyen, M., Chang, C. H. C., Baldassano, C., 
Lositsky, O., Simony, E., Chow, M. A., Leong, Y. C., Brooks, P. P., Micciche, E., … 
Hasson, U. (2021). The “Narratives” fMRI dataset for evaluating models of naturalistic 
language comprehension. Scientific Data, 8(1), 250. 

36. Baldassano, C., Hasson, U., & Norman, K. A. (2018). Representation of Real-World Event 
Schemas during Narrative Perception. The Journal of Neuroscience: The Official Journal of 
the Society for Neuroscience, 38(45), 9689–9699. 

37. Chen, J., Honey, C. J., Simony, E., Arcaro, M. J., Norman, K. A., & Hasson, U. (2016). 
Accessing Real-Life Episodic Information from Minutes versus Hours Earlier Modulates 
Hippocampal and High-Order Cortical Dynamics. Cerebral Cortex , 26(8), 3428–3441. 

38. Finn, E. S., Corlett, P. R., Chen, G., Bandettini, P. A., & Constable, R. T. (2018). Trait 
paranoia shapes inter-subject synchrony in brain activity during an ambiguous social 
narrative. Nature Communications, 9(1), 2043. 

39. Redcay, E., & Moraczewski, D. (2020). Social cognition in context: A naturalistic imaging 
approach. NeuroImage, 216(November 2019), 116392. 

40. Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., & Hasson, U. 
(2016). Dynamic reconfiguration of the default mode network during narrative 
comprehension. Nature Communications, 7, 12141. 

41. Schapiro, A. C., McDevitt, E. A., Rogers, T. T., Mednick, S. C., & Norman, K. A. (2018). 
Human hippocampal replay during rest prioritizes weakly learned information and predicts 
memory performance. Nature Communications, 9(1), 3920. 



RUNNING HEAD: SOCIAL COGNITION, MEMORY, DEFAULT NETWORK 

20 

42. Tambini, A., & Davachi, L. (2019). Awake Reactivation of Prior Experiences Consolidates 
Memories and Biases Cognition. Trends in Cognitive Sciences, 23(10), 876–890. 

43. Davidson, T. J., Kloosterman, F., & Wilson, M. A. (2009). Hippocampal replay of extended 
experience. Neuron, 63(4), 497–507. 

44. Diba, K., & Buzsáki, G. (2007). Forward and reverse hippocampal place-cell sequences 
during ripples. Nature Neuroscience, 10(10), 1241–1242. 

45. Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in 
hippocampal place cells during the awake state. Nature, 440(7084), 680–683. 

46. Lee, A. K., & Wilson, M. A. (2002). Memory of sequential experience in the hippocampus 
during slow wave sleep. Neuron, 36(6), 1183–1194. 

47. Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive 
control of memory. Neuropsychologia, 45(13), 2883–2901. 

48. Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the 
hippocampal complex. Current Opinion in Neurobiology, 7(2), 217–227. 

49. T. Yarkoni, R. A. Poldrack, T. E. Nichols, D. C. Van Essen, T. D. Wager, Large-scale 
automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 
(2011). 

50. Eichenbaum, H., Otto, T., & Cohen, N. J. (1992). The hippocampus—what does it do? 
Behavioral and Neural Biology, 57(1), 2–36. 

51. Fletcher, P. C., Stephenson, C. M. E., Carpenter, T. A., Donovan, T., & Bullmorel, E. T. 
(2003). Regional brain activations predicting subsequent memory success: an event-
related fMRI study of the influence of encoding tasks. Cortex; a Journal Devoted to the 
Study of the Nervous System and Behavior, 39(4-5), 1009–1026. 

52. Kim, H. (2011). Neural activity that predicts subsequent memory and forgetting: a meta-
analysis of 74 fMRI studies. NeuroImage, 54(3), 2446–2461. 

53. Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic encoding: 
insights from fMRI subsequent memory effects and dual-attention theory. Neurobiology of 
Learning and Memory, 91(2), 139–154. 

54. Dunbar, R. I. M. (2009). The social brain hypothesis and its implications for social evolution. 
Annals of Human Biology, 36(5), 562–572. 

55. Kahn, I., Pascual-Leone, A., Theoret, H., Fregni, F., Clark, D., & Wagner, A. D. (2005). 
Transient disruption of ventrolateral prefrontal cortex during verbal encoding affects 
subsequent memory performance. Journal of Neurophysiology, 94(1), 688–698. 

56. Park, H., & Rugg, M. D. (2008). Neural correlates of successful encoding of semantically 
and phonologically mediated inter-item associations. NeuroImage, 43(1), 165–172. 

57. Meyer, M. L. (2019). Social by Default: Characterizing the Social Functions of the Resting 



RUNNING HEAD: SOCIAL COGNITION, MEMORY, DEFAULT NETWORK 

21 

Brain. Current Directions in Psychological Science, 28(4), 380–386. 

58. Spunt, R. P., Meyer, M. L., & Lieberman, M. D. (2015). The default mode of human brain 
function primes the intentional stance. Journal of Cognitive Neuroscience, 27(6), 1116–
1124. 

59. Gao, W., Zhu, H., Giovanello, K. S., Smith, J. K., Shen, D., Gilmore, J. H., & Lin, W. (2009). 
Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old 
healthy pediatric subjects. Proceedings of the National Academy of Sciences of the United 
States of America, 106(16), 6790–6795. 

60. Fan, F., Liao, X., Lei, T., Zhao, T., Xia, M., Men, W., Wang, Y., Hu, M., Liu, J., Qin, S., Tan, 
S., Gao, J.-H., Dong, Q., Tao, S., & He, Y. (2021). Development of the default-mode 
network during childhood and adolescence: A longitudinal resting-state fMRI study. 
NeuroImage, 226, 117581. 

61. Hoekzema, E., Barba-Müller, E., Pozzobon, C., Picado, M., Lucco, F., García-García, D., 
Soliva, J. C., Tobeña, A., Desco, M., Crone, E. A., Ballesteros, A., Carmona, S., & 
Vilarroya, O. (2017). Pregnancy leads to long-lasting changes in human brain structure. 
Nature Neuroscience, 20(2), 287–296. 

62. Somerville, L. H., Jones, R. M., Ruberry, E. J., Dyke, J. P., Glover, G., & Casey, B. J. 
(2013). The medial prefrontal cortex and the emergence of self-conscious emotion in 
adolescence. Psychological Science, 24(8), 1554–1562. 

63. Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). 
Discovering Event Structure in Continuous Narrative Perception and Memory. Neuron, 
95(3), 709–721.e5. 
 

64. Leong, Y. C., Chen, J., Willer, R., & Zaki, J. (2020). Conservative and liberal attitudes drive 
polarized neural responses to political content. Proceedings of the National Academy of 
Sciences of the United States of America, 117(44), 27731–27739. 
 

65. Bellana, B., Mahabal, A., & Honey, C. J. (2022). Narrative thinking lingers in spontaneous 
thought. Nature Communications, 13(1), 4585. 
 

66. Hasson, U., Chen, J., & Honey, C. J. (2015). Hierarchical process memory: memory as an 
integral component of information processing. Trends in Cognitive Sciences, 19(6), 304–
313. 
 

67. Buckner, R. L., & DiNicola, L. M. (2019). The brain’s default network: updated anatomy, 
physiology and evolving insights. Nature Reviews. Neuroscience, 20(10), 593–608. 
 

68. Smallwood, J., Bernhardt, B. C., Leech, R., Bzdok, D., Jefferies, E., & Margulies, D. S. 
(2021). The default mode network in cognition: a topographical perspective. Nature 
Reviews. Neuroscience, 22(8), 503–513. 
 

69. Yeshurun, Y., Nguyen, M., & Hasson, U. (2021). The default mode network: where the 
idiosyncratic self meets the shared social world. Nature Reviews. Neuroscience, 22(3), 
181–192. 
 



RUNNING HEAD: SOCIAL COGNITION, MEMORY, DEFAULT NETWORK 

22 

70. Gupta, A. S., van der Meer, M. A. A., Touretzky, D. S., & Redish, A. D. (2010). Hippocampal 
replay is not a simple function of experience. Neuron, 65(5), 695–705. 
 

71. Spunt, B. (2016). easy-optimize-x: Formal Release for Archiving on Zenodo (1.0). Zenodo. 
https://doi.org/10.5281/zenodo.58616 
 

72. Tambini, A., Rimmele, U., Phelps, E. A., & Davachi, L. (2017). Emotional brain states carry 
over and enhance future memory formation. Nature Neuroscience, 20(2), 271–278. 
 

73. Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, 
J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., 
Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: a robust preprocessing pipeline for 
functional MRI. Nature methods, 16(1), 111–116. https://doi.org/10.1038/s41592-018-0235-
4 
 

74. Esteban, Oscar, Blair, Ross, Markiewicz, Christopher J., Berleant, Shoshana L., Moodie, 
Craig, Ma, Feilong, Isik, Ayse Ilkay, Erramuzpe, Asier, Kent, James D., Goncalves, 
Mathias, DuPre, Elizabeth, Sitek, Kevin R., Gomez, Daniel E. P., Lurie, Daniel J., Ye, 
Zhifang, Salo, Taylor, Valabregue, Romain, Amlien, Inge K., Liem, Franz, … Gorgolewski, 
Krzysztof J. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI 
(1.5.1rc2). Zenodo. https://doi.org/10.5281/zenodo.3511440 
 

75. Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, Ghosh SS 
(2011) Nipype: a flexible, lightweight and extensible neuroimaging data processing 
framework in Python. Front. Neuroinform. 5:13. doi: 10.3389/fninf.2011.00013 
 

76. Esteban, Oscar, Markiewicz, Christopher J., Burns, Christopher, Goncalves, Mathias, 
Jarecka, Dorota, Ziegler, Erik, Berleant, Shoshana, Ellis, David Gage, Pinsard, Basile, 
Madison, Cindee, Waskom, Michael, Notter, Michael Philipp, Clark, Daniel, Manhães-
Savio, Alexandre, Clark, Dav, Jordan, Kesshi, Dayan, Michael, Halchenko, Yaroslav O., 
Loney, Fred, … Ghosh, Satrajit. (2022). nipy/nipype: 1.8.1 (1.8.1). Zenodo. 
https://doi.org/10.5281/zenodo.6555085 
 

77. Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. 
C. (2010). N4ITK: improved N3 bias correction. IEEE transactions on medical imaging, 
29(6), 1310–1320. https://doi.org/10.1109/TMI.2010.2046908 
 

78. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration 
with cross-correlation: evaluating automated labeling of elderly and neurodegenerative 
brain. Med Image Anal. 2008 Feb;12(1):26-41. doi: 10.1016/j.media.2007.06.004. Epub 
2007 Jun 23. PMID: 17659998; PMCID: PMC2276735. 
 

79. Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a 
hidden Markov random field model and the expectation-maximization algorithm. IEEE 
transactions on medical imaging, 20(1), 45–57. https://doi.org/10.1109/42.906424 
 

80. Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., Collins, D. L., & Brain 
Development Cooperative Group (2011). Unbiased average age-appropriate atlases for 
pediatric studies. NeuroImage, 54(1), 313–327. 
https://doi.org/10.1016/j.neuroimage.2010.07.033 
 



RUNNING HEAD: SOCIAL COGNITION, MEMORY, DEFAULT NETWORK 

23 

81. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the 
robust and accurate linear registration and motion correction of brain images. NeuroImage, 
17(2), 825–841. https://doi.org/10.1016/s1053-8119(02)91132-8 
 

82. Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration 
of brain images. Medical image analysis, 5(2), 143–156. https://doi.org/10.1016/s1361-
8415(01)00036-6 
 

83. Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using 
boundary-based registration. NeuroImage, 48(1), 63–72. 
https://doi.org/10.1016/j.neuroimage.2009.06.060 
 

84. Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. 
(2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. 
NeuroImage, 84, 320–341. 
 

85. Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction 
method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101. 
https://doi.org/10.1016/j.neuroimage.2007.04.042 
 

86. Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E., 
Eickhoff, S. B., Hakonarson, H., Gur, R. C., Gur, R. E., & Wolf, D. H. (2013). An improved 
framework for confound regression and filtering for control of motion artifact in the 
preprocessing of resting-state functional connectivity data. NeuroImage, 64, 240–256. 
https://doi.org/10.1016/j.neuroimage.2012.08.052 
 

87. C. Lanczos, Evaluation of noisy data. SIAM J. Numer. Anal. 1, 76–85 (1964). 
 

88. L. Chang et al., cosanlab/nltools: 0.3.14. https://doi.org/10.5281/zenodo.3251172. 
 

89. de la Vega, A., Chang, L. J., Banich, M. T., Wager, T. D., & Yarkoni, T. (2016). Large-Scale 
Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization. 
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(24), 
6553–6562. 


